Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications Book

Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications


  • Author : Angelo Basile
  • Publisher : Elsevier
  • Release Date : 2011-08-24
  • Genre: Technology & Engineering
  • Pages : 848
  • ISBN 10 : 9780857093790

GET BOOK
Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications Excerpt :

Membrane materials allow for the selective separation of gas and vapour and for ion transport. Materials research and development continues to drive improvements in the design, manufacture and integration of membrane technologies as critical components in both sustainable energy and clean industry applications. Membrane utilisation offers process simplification and intensification in industry, providing low-cost, and efficient and reliable operation, and contributing towards emissions reductions and energy security. Advanced membrane science and technology for sustainable energy and environmental applications presents a comprehensive review of membrane utilisation and integration within energy and environmental industries. Part one introduces the topic of membrane science and engineering, from the fundamentals of membrane processes and separation to membrane characterization and economic analysis. Part two focuses on membrane utilisation for carbon dioxide (CO2) capture in coal and gas power plants, including pre- and post-combustion and oxygen transport technologies. Part three reviews membranes for the petrochemical industry, with chapters covering hydrocarbon fuel, natural gas and synthesis gas processing, as well as advanced biofuels production. Part four covers membranes for alternative energy applications and energy storage, such as membrane technology for redox and lithium batteries, fuel cells and hydrogen production. Finally, part five discusses membranes utilisation in industrial and environmental applications, including microfiltration, ultrafiltration, and forward osmosis, as well as water, wastewater and nuclear power applications. With its distinguished editors and team of expert contributors, Advanced membrane science and technology for sustainable energy and environmental applications is an essential reference for membrane and materials engineers and manufacturers, as well as researchers and academics interested in this field. Presents a comprehensiv

Current Trends and Future Developments on  Bio   Membranes Book

Current Trends and Future Developments on Bio Membranes


  • Author : Angelo Basile
  • Publisher : Elsevier
  • Release Date : 2018-07-18
  • Genre: Technology & Engineering
  • Pages : 668
  • ISBN 10 : 9780128136461

GET BOOK
Current Trends and Future Developments on Bio Membranes Excerpt :

Current Trends and Future Developments on (Bio-) Membranes: Carbon Dioxide Separation/Capture by Using Membranes explores the unique property of membranes to separate gases with different physical and chemical properties. The book covers both polymeric and inorganic materials for CO2 separation and explains their mechanism of action, allowing for the development and most appropriate and efficient processes. It also lists the advantages of using membranes instead of other separation techniques, i.e., their low operating costs and low energy consumption. This book offers a unique opportunity for scientists working in the field of membrane technology for CO2 separation and capture. Outlines numerous membrane-based technologies for CO2 separation and capture Lists new, advanced separation techniques and production processes Includes various applications, modelling, and the economic considerations of each process Covers advanced techniques for the separation of CO2 in natural gas

Membranes for Clean and Renewable Power Applications Book

Membranes for Clean and Renewable Power Applications


  • Author : A Gugliuzza
  • Publisher : Woodhead Publishing
  • Release Date : 2014-03-31
  • Genre: Technology & Engineering
  • Pages : 438
  • ISBN 10 : 9780857098658

GET BOOK
Membranes for Clean and Renewable Power Applications Excerpt :

The development and deployment of membrane technologies continues to advance thanks to innovative materials and novel engineering approaches. Membranes for clean and renewable power applications introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications. Chapters in part one introduce the utilization of membrane technology in the production of clean and renewable power and the combining of membrane processes with renewable energy technologies. Part two focusses on membranes for biofuel production and processing including membranes and membrane reactors for the production of biodiesel and second generation biofuels. Part three discusses membranes for syngas, hydrogen and oxygen production and processing. Chapters highlight steam reforming of biofuels for the production of hydrogen-rich gas A., perovskite membrane reactors, and environmental analysis of hydrogen-methane blends for transportation. Chapters in part four explore membranes for fuel cells including ceramic membranes for intermediate temperature solid oxide fuel cells (SOFC), microbial fuel cells, and direct bioethanol fuel cells. Finally, part five discusses membranes integrated with solar, wind energy and water-related applications including membrane technologies for solar-hydrogen production, solar-desalination plants, and the storage as methane of energy generated by wind power and other renewable sources. A final chapter introduces wastewater processing, energy conservation and energy generation. Membranes for clean and renewable power applications is a comprehensive resource for professionals and consultants in the clean and renewable energy industry, membrane and materials scientists and professionals, and academics and researchers in the field. Introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Book

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology


  • Author : Christoph Hartnig
  • Publisher : Elsevier
  • Release Date : 2012-03-19
  • Genre: Technology & Engineering
  • Pages : 430
  • ISBN 10 : 9780857095473

GET BOOK
Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Excerpt :

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving perform

Sustainable Energy from Salinity Gradients Book

Sustainable Energy from Salinity Gradients


  • Author : Andrea Cipollina
  • Publisher : Woodhead Publishing
  • Release Date : 2016-03-01
  • Genre: Technology & Engineering
  • Pages : 362
  • ISBN 10 : 9780081003237

GET BOOK
Sustainable Energy from Salinity Gradients Excerpt :

Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis. Covers applications of pressure retarded osmosis, reverse electrodialysis, and capacitive mixing for salinity gradient power in one convenient volume Presents the environmental aspects and economics of salinity gradient energy Explores possible synergies between desalination and salinity gradient energy

Functional Materials for Sustainable Energy Applications Book

Functional Materials for Sustainable Energy Applications


  • Author : J A Kilner
  • Publisher : Elsevier
  • Release Date : 2012-09-28
  • Genre: Technology & Engineering
  • Pages : 708
  • ISBN 10 : 9780857096371

GET BOOK
Functional Materials for Sustainable Energy Applications Excerpt :

Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production. Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials. With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. An essential guide to the development and application of functional materials in sustainable energy production Reviews functional materials for solar power Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance Book

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance


  • Author : Richard Folkson
  • Publisher : Elsevier
  • Release Date : 2014-03-19
  • Genre: Technology & Engineering
  • Pages : 784
  • ISBN 10 : 9780857097422

GET BOOK
Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance Excerpt :

Most vehicles run on fossil fuels, and this presents a major emissions problem as demand for fuel continues to increase. Alternative Fuels and Advanced Vehicle Technologies gives an overview of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Part I considers the role of alternative fuels such as electricity, alcohol, and hydrogen fuel cells, as well as advanced additives and oils, in environmentally sustainable transport. Part II explores methods of revising engine and vehicle design to improve environmental performance and fuel economy. It contains chapters on improvements in design, aerodynamics, combustion, and transmission. Finally, Part III outlines developments in electric and hybrid vehicle technologies, and provides an overview of the benefits and limitations of these vehicles in terms of their environmental impact, safety, cost, and design practicalities. Alternative Fuels and Advanced Vehicle Technologies is a standard reference for professionals, engineers, and researchers in the automotive sector, as well as vehicle manufacturers, fuel system developers, and academics with an interest in this field. Provides a broad-ranging review of recent research into advanced fuels and vehicle technologies that will be instrumental in improving the energy efficiency and environmental impact of the automotive sector Reviews the development of alternative fuels, more efficient engines, and powertrain technologies, as well as hybrid and electric vehicle technologies

Membrane based Hybrid Processes for Wastewater Treatment Book

Membrane based Hybrid Processes for Wastewater Treatment


  • Author : Maulin P. Shah
  • Publisher : Elsevier
  • Release Date : 2021-05-27
  • Genre: Science
  • Pages : 730
  • ISBN 10 : 9780128241882

GET BOOK
Membrane based Hybrid Processes for Wastewater Treatment Excerpt :

Membrane-Based Hybrid Processes for Wastewater Treatment analyzes and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater, the recovery of valuable compounds, and water reutilization. In addition, recent and future trends in membrane technology are highlighted. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. Membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater. Discusses the properties, mechanisms, advantages, limitations and promising solutions of different types of membrane technologies Addresses the optimization of process parameters Describes the performance of different membranes Presents the potential of Nanotechnology to improve the treatment efficiency of wastewater treatment plants (WWTPs) Covers the application of membrane and membrane-based hybrid treatment technologies for wastewater treatment Includes forward osmosis, electrodialysis, and diffusion dialysis Considers hybrid membrane systems expanded to cover zero liquid discharge, salt recovery, and removal of trace contaminants

Nanofiber Membranes for Medical  Environmental  and Energy Applications Book

Nanofiber Membranes for Medical Environmental and Energy Applications


  • Author : Ahmad Fauzi Ismail
  • Publisher : CRC Press
  • Release Date : 2019-07-30
  • Genre: Science
  • Pages : 300
  • ISBN 10 : 9781351174039

GET BOOK
Nanofiber Membranes for Medical Environmental and Energy Applications Excerpt :

This book focuses on the nanofiber membrane’s fabrication, characterization, and performance for medical, environment and energy applications. Topics include polymer, inorganic and composite-form nanofiber membrane materials. Top Research teams from varied disciplines and continents outline applied nanofiber membrane fabrication techniques and characterizations. Promising nanofiber membranes for improving and enhancing technologies used in drug delivery, wound healing, tissue engineering, water and wastewater treatment and purification, gas separation and purification, air purification, and fuel cells are discussed along with the likely path forward for commercial usage. Key Features: Shares the most recent discovery solutions from experts all over the globe for the numerous problems in medical, environmental and energy applications. Provides a holistic cycle of nanofiber membrane development which comprehensively discusses the membrane preparation, characterizations, performance and the way forward for a specific process and application. Explains the mechanism of separation and purification. Focuses on the nanofiber membrane’s fabrication, characterizations, and performance in various scenarios and commercial applications.

Palladium Membrane Technology for Hydrogen Production  Carbon Capture and Other Applications Book

Palladium Membrane Technology for Hydrogen Production Carbon Capture and Other Applications


  • Author : A Doukelis
  • Publisher : Elsevier
  • Release Date : 2014-10-20
  • Genre: Technology & Engineering
  • Pages : 402
  • ISBN 10 : 9781782422419

GET BOOK
Palladium Membrane Technology for Hydrogen Production Carbon Capture and Other Applications Excerpt :

Thanks to their outstanding hydrogen selectivity, palladium membranes have attracted extensive R&D interest. They are a potential breakthrough technology for hydrogen production and also have promising applications in the areas of thermochemical biorefining. This book summarises key research in palladium membrane technologies, with particular focus on the scale-up challenges. After an introductory chapter, Part one reviews the fabrication of palladium membranes. Part two then focuses on palladium membrane module and reactor design. The final part of the book reviews the operation of palladium membranes for synthesis gas/hydrogen production, carbon capture and other applications. Review of manufacture and design issues for palladium membranes Discussion of the applications of palladium membrane technology, including solar steam reforming, IGCC plants, NGCC plants, CHP plants and hydrogen production Examples of the technology in operation

Membrane Reactors for Energy Applications and Basic Chemical Production Book

Membrane Reactors for Energy Applications and Basic Chemical Production


  • Author : Angelo Basile
  • Publisher : Elsevier
  • Release Date : 2015-02-10
  • Genre: Technology & Engineering
  • Pages : 696
  • ISBN 10 : 9781782422273

GET BOOK
Membrane Reactors for Energy Applications and Basic Chemical Production Excerpt :

Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy

Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications Book

Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications


  • Author : Jing Zhang
  • Publisher : Springer
  • Release Date : 2017-07-16
  • Genre: Technology & Engineering
  • Pages : 286
  • ISBN 10 : 9783319599069

GET BOOK
Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications Excerpt :

This book explores the recent developments, perspectives on future research, and pertinent data from academia, industry, and government research laboratory to discuss fundamental mechanisms as well as processing and applications of advanced metallic and ceramic thin film and coating materials for energy and environmental applications. It is a platform to disseminate the latest research progress related to processing, characterization, and modelling. The authors address both thermal barrier and environmental coatings; magnetic and thermoelectric materials; and solar cell and solid oxide fuel cell materials. It is appropriate supplementary reading for students and primary reading for researchers in materials science and engineering.

Electrical Drives for Direct Drive Renewable Energy Systems Book

Electrical Drives for Direct Drive Renewable Energy Systems


  • Author : Markus Mueller
  • Publisher : Elsevier
  • Release Date : 2013-03-25
  • Genre: Technology & Engineering
  • Pages : 280
  • ISBN 10 : 9780857097491

GET BOOK
Electrical Drives for Direct Drive Renewable Energy Systems Excerpt :

Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and an introduction to direct drive wave energy conversion systems. The commercial application of these technologies is investigated via case studies on the permanent magnet direct drive generator in the Zephyros wind turbine, and the Archimedes Wave Swing (AWS) direct drive wave energy pilot plant. Finally, the book concludes by exploring the application of high-temperature superconducting machines to direct drive renewable energy systems. With its distinguished editors and international team of expert contributors, Electrical drives for direct drive renewable energy systems provides a comprehensive review of key technologies for anyone involved with or interested in the design, construction, operation, development and optimisation of direct drive wind and marine energy systems. An authorative guide to the design, development and operation of gearless direct drives Discusses the principles of electrical design for permanent magnet generators and electrical, thermal

Advances in Batteries for Medium and Large Scale Energy Storage Book

Advances in Batteries for Medium and Large Scale Energy Storage


  • Author : C Menictas
  • Publisher : Elsevier
  • Release Date : 2014-12-09
  • Genre: Technology & Engineering
  • Pages : 634
  • ISBN 10 : 9781782420224

GET BOOK
Advances in Batteries for Medium and Large Scale Energy Storage Excerpt :

As energy produced from renewable sources is increasingly integrated into the electricity grid, interest in energy storage technologies for grid stabilisation is growing. This book reviews advances in battery technologies and applications for medium and large-scale energy storage. Chapters address advances in nickel, sodium and lithium-based batteries. Other chapters review other emerging battery technologies such as metal-air batteries and flow batteries. The final section of the book discuses design considerations and applications of batteries in remote locations and for grid-scale storage. Reviews advances in battery technologies and applications for medium and large-scale energy storage Examines battery types, including zing-based, lithium-air and vanadium redox flow batteries Analyses design issues and applications of these technologies