An Introduction to Stochastic Orders Book

An Introduction to Stochastic Orders


  • Author : Felix Belzunce
  • Publisher : Academic Press
  • Release Date : 2015-09-29
  • Genre: Mathematics
  • Pages : 174
  • ISBN 10 : 9780128038260

DOWNLOAD BOOK
An Introduction to Stochastic Orders Excerpt :

An Introduction to Stochastic Orders discusses this powerful tool that can be used in comparing probabilistic models in different areas such as reliability, survival analysis, risks, finance, and economics. The book provides a general background on this topic for students and researchers who want to use it as a tool for their research. In addition, users will find detailed proofs of the main results and applications to several probabilistic models of interest in several fields, and discussions of fundamental properties of several stochastic orders, in the univariate and multivariate cases, along with applications to probabilistic models. Introduces stochastic orders and its notation Discusses different orders of univariate stochastic orders Explains multivariate stochastic orders and their convex, likelihood ratio, and dispersive orders

Introduction to Stochastic Processes Book

Introduction to Stochastic Processes


  • Author : Erhan Cinlar
  • Publisher : Courier Corporation
  • Release Date : 2013-02-20
  • Genre: Mathematics
  • Pages : 416
  • ISBN 10 : 9780486276328

DOWNLOAD BOOK
Introduction to Stochastic Processes Excerpt :

Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

An Introduction to Stochastic Modeling Book

An Introduction to Stochastic Modeling


  • Author : Howard M. Taylor
  • Publisher : Academic Press
  • Release Date : 2014-05-10
  • Genre: Mathematics
  • Pages : 410
  • ISBN 10 : 9781483269276

DOWNLOAD BOOK
An Introduction to Stochastic Modeling Excerpt :

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Introduction to Stochastic Processes with R Book

Introduction to Stochastic Processes with R


  • Author : Robert P. Dobrow
  • Publisher : John Wiley & Sons
  • Release Date : 2016-03-07
  • Genre: Mathematics
  • Pages : 503
  • ISBN 10 : 9781118740651

DOWNLOAD BOOK
Introduction to Stochastic Processes with R Excerpt :

An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.

Introduction to Stochastic Models Book

Introduction to Stochastic Models


  • Author : Roe Goodman
  • Publisher : Courier Corporation
  • Release Date : 2006-01-01
  • Genre: Mathematics
  • Pages : 370
  • ISBN 10 : 9780486450377

DOWNLOAD BOOK
Introduction to Stochastic Models Excerpt :

Newly revised by the author, this undergraduate-level text introduces the mathematical theory of probability and stochastic processes. Using both computer simulations and mathematical models of random events, it comprises numerous applications to the physical and biological sciences, engineering, and computer science. Subjects include sample spaces, probabilities distributions and expectations of random variables, conditional expectations, Markov chains, and the Poisson process. Additional topics encompass continuous-time stochastic processes, birth and death processes, steady-state probabilities, general queuing systems, and renewal processes. Each section features worked examples, and exercises appear at the end of each chapter, with numerical solutions at the back of the book. Suggestions for further reading in stochastic processes, simulation, and various applications also appear at the end.

Introduction To Stochastic Processes Book

Introduction To Stochastic Processes


  • Author : Mu-fa Chen
  • Publisher : World Scientific
  • Release Date : 2021-05-25
  • Genre: Mathematics
  • Pages : 244
  • ISBN 10 : 9789814740326

DOWNLOAD BOOK
Introduction To Stochastic Processes Excerpt :

The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.

Stochastic Comparisons with Applications Book

Stochastic Comparisons with Applications


  • Author : Subhash C. Kochar
  • Publisher : Springer Nature
  • Release Date : 2022-10-22
  • Genre: Mathematics
  • Pages : 280
  • ISBN 10 : 9783031121043

DOWNLOAD BOOK
Stochastic Comparisons with Applications Excerpt :

This book emphasizes the use of stochastic orders as motivational tools for developing new statistical procedures. Stochastic orders have found useful applications in many disciplines, including reliability theory, survival analysis, risk theory, finance, nonparametric methods, economics and actuarial science. Written by a statistician, this volume clarifies the connection between stochastic orders and nonparametric methods. The importance of order statistics and spacings is well recognized. Classically, they mainly focus on the case when the observations are independent and identically distributed, however, several new developments have extended the comparison of order statistics to the case of non-identically distributed or non-independent observations. In addition to giving a detailed discussion of various topics in the general area of stochastic orders, a substantial part of the book is devoted to recent research on stochastic comparisons of order statistics and spacings, including a long chapter on dependence among them. The book will be useful for graduate students and researchers in statistics, economics, actuarial science and other related disciplines. In particular, with close to 300 references, it will be a valuable resource for reliability theorists, applied probabilists and statisticians. Readers are expected to have taken a first-year graduate level course in mathematical statistics or in applied probability.

Combining Soft Computing and Statistical Methods in Data Analysis Book

Combining Soft Computing and Statistical Methods in Data Analysis


  • Author : Christian Borgelt
  • Publisher : Springer Science & Business Media
  • Release Date : 2010-10-12
  • Genre: Technology & Engineering
  • Pages : 644
  • ISBN 10 : 9783642147463

DOWNLOAD BOOK
Combining Soft Computing and Statistical Methods in Data Analysis Excerpt :

Over the last forty years there has been a growing interest to extend probability theory and statistics and to allow for more flexible modelling of imprecision, uncertainty, vagueness and ignorance. The fact that in many real-life situations data uncertainty is not only present in the form of randomness (stochastic uncertainty) but also in the form of imprecision/fuzziness is but one point underlining the need for a widening of statistical tools. Most such extensions originate in a "softening" of classical methods, allowing, in particular, to work with imprecise or vague data, considering imprecise or generalized probabilities and fuzzy events, etc. About ten years ago the idea of establishing a recurrent forum for discussing new trends in the before-mentioned context was born and resulted in the first International Conference on Soft Methods in Probability and Statistics (SMPS) that was held in Warsaw in 2002. In the following years the conference took place in Oviedo (2004), in Bristol (2006) and in Toulouse (2008). In the current edition the conference returns to Oviedo. This edited volume is a collection of papers presented at the SMPS 2010 conference held in Mieres and Oviedo. It gives a comprehensive overview of current research into the fusion of soft methods with probability and statistics.

Introduction to Stochastic Dynamic Programming Book

Introduction to Stochastic Dynamic Programming


  • Author : Sheldon M. Ross
  • Publisher : Academic Press
  • Release Date : 2014-07-10
  • Genre: Mathematics
  • Pages : 178
  • ISBN 10 : 9781483269092

DOWNLOAD BOOK
Introduction to Stochastic Dynamic Programming Excerpt :

Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.

Stochastic Processes with Applications Book

Stochastic Processes with Applications


  • Author : Antonio Di Crescenzo
  • Publisher : MDPI
  • Release Date : 2019-11-28
  • Genre: Mathematics
  • Pages : 284
  • ISBN 10 : 9783039217281

DOWNLOAD BOOK
Stochastic Processes with Applications Excerpt :

Stochastic processes have wide relevance in mathematics both for theoretical aspects and for their numerous real-world applications in various domains. They represent a very active research field which is attracting the growing interest of scientists from a range of disciplines. This Special Issue aims to present a collection of current contributions concerning various topics related to stochastic processes and their applications. In particular, the focus here is on applications of stochastic processes as models of dynamic phenomena in research areas certain to be of interest, such as economics, statistical physics, queuing theory, biology, theoretical neurobiology, and reliability theory. Various contributions dealing with theoretical issues on stochastic processes are also included.

An Introduction to Stochastic Differential Equations Book

An Introduction to Stochastic Differential Equations


  • Author : Lawrence C. Evans
  • Publisher : American Mathematical Soc.
  • Release Date : 2012-12-11
  • Genre: Mathematics
  • Pages : 151
  • ISBN 10 : 9781470410544

DOWNLOAD BOOK
An Introduction to Stochastic Differential Equations Excerpt :

These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mat

Stochastic Processes Book

Stochastic Processes


  • Author : Peter Watts Jones
  • Publisher : CRC Press
  • Release Date : 2017-10-30
  • Genre: Mathematics
  • Pages : 255
  • ISBN 10 : 9781498778121

DOWNLOAD BOOK
Stochastic Processes Excerpt :

Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.

Stochastic Ordering and Dependence in Applied Probability Book

Stochastic Ordering and Dependence in Applied Probability


  • Author : R. Szekli
  • Publisher : Springer Science & Business Media
  • Release Date : 2012-12-06
  • Genre: Mathematics
  • Pages : 194
  • ISBN 10 : 9781461225287

DOWNLOAD BOOK
Stochastic Ordering and Dependence in Applied Probability Excerpt :

This book is an introductionary course in stochastic ordering and dependence in the field of applied probability for readers with some background in mathematics. It is based on lectures and senlinars I have been giving for students at Mathematical Institute of Wroclaw University, and on a graduate course a.t Industrial Engineering Department of Texas A&M University, College Station, and addressed to a reader willing to use for example Lebesgue measure, conditional expectations with respect to sigma fields, martingales, or compensators as a common language in this field. In Chapter 1 a selection of one dimensional orderings is presented together with applications in the theory of queues, some parts of this selection are based on the recent literature (not older than five years). In Chapter 2 the material is centered around the strong stochastic ordering in many dimen sional spaces and functional spaces. Necessary facts about conditioning, Markov processes an"d point processes are introduced together with some classical results such as the product formula and Poissonian departure theorem for Jackson networks, or monotonicity results for some re newal processes, then results on stochastic ordering of networks, re~~ment policies and single server queues connected with Markov renewal processes are given. Chapter 3 is devoted to dependence and relations between dependence and ordering, exem plified by results on queueing networks and point processes among others.

Stochastic Orders Book

Stochastic Orders


  • Author : Moshe Shaked
  • Publisher : Springer Science & Business Media
  • Release Date : 2007-04-03
  • Genre: Mathematics
  • Pages : 473
  • ISBN 10 : 9780387346755

DOWNLOAD BOOK
Stochastic Orders Excerpt :

This reference text presents comprehensive coverage of the various notions of stochastic orderings, their closure properties, and their applications. Some of these orderings are routinely used in many applications in economics, finance, insurance, management science, operations research, statistics, and various other fields. And the value of the other notions of stochastic orderings needs further exploration. This book is an ideal reference for those interested in decision making under uncertainty and interested in the analysis of complex stochastic systems. It is suitable as a text for advanced graduate course on stochastic ordering and applications.