Analytical Modelling of Fuel Cells Book

Analytical Modelling of Fuel Cells


  • Author : Andrei A Kulikovsky
  • Publisher : Elsevier
  • Release Date : 2010-06-29
  • Genre: Technology & Engineering
  • Pages : 312
  • ISBN 10 : 0444535616

DOWNLOAD BOOK
Analytical Modelling of Fuel Cells Excerpt :

In fuel cell research, the gap between fundamental electrochemical processes and the engineering of fuel cell systems is bridged by the physical modelling of fuel cells. This relatively new discipline aims to understand the basic transport and kinetic phenomena in a real cell and stack environment, paving the way for improved design and performance. The author brings his unique approach to the analytical modeling of fuel cells to this essential reference for energy technologists. Covers recent advances and analytical solutions to a range of problems faced by energy technologists, from catalyst layer performance to thermal stability Provides detailed graphs, charts and other tools (glossary, index) to maximize R&D output while minimizing costs and time spent on dead-end research Presents Kulikovsky’s signature approach (and the data to support it)—which uses "simplified" models based on idealized systems, basic geometries, and minimal assumptions—enabling qualitative understanding of the causes and effects of phenomena

Device and Materials Modeling in PEM Fuel Cells Book

Device and Materials Modeling in PEM Fuel Cells


  • Author : Stephen J. Paddison
  • Publisher : Springer Science & Business Media
  • Release Date : 2008-10-15
  • Genre: Technology & Engineering
  • Pages : 588
  • ISBN 10 : 0387786910

DOWNLOAD BOOK
Device and Materials Modeling in PEM Fuel Cells Excerpt :

Computational studies on fuel cell-related issues are increasingly common. These studies range from engineering level models of fuel cell systems and stacks to molecular level, electronic structure calculations on the behavior of membranes and catalysts, and everything in between. This volume explores this range. It is appropriate to ask what, if anything, does this work tell us that we cannot deduce intuitively? Does the emperor have any clothes? In answering this question resolutely in the affirmative, I will also take the liberty to comment a bit on what makes the effort worthwhile to both the perpetrator(s) of the computational study (hereafter I will use the blanket terms modeler and model for both engineering and chemical physics contexts) and to the rest of the world. The requirements of utility are different in the two spheres. As with any activity, there is a range of quality of work within the modeling community. So what constitutes a useful model? What are the best practices, serving both the needs of the promulgator and consumer? Some of the key com- nents are covered below. First, let me provide a word on my ‘credentials’ for such commentary. I have participated in, and sometimes initiated, a c- tinuous series of such efforts devoted to studies of PEMFC components and cells over the past 17 years. All that participation was from the experim- tal, qualitative side of the effort.

Analytical Modelling of Fuel Cells Book

Analytical Modelling of Fuel Cells


  • Author : Andrei A. Kulikovsky
  • Publisher : Elsevier
  • Release Date : 2019-05-03
  • Genre: Technology & Engineering
  • Pages : 382
  • ISBN 10 : 9780444642905

DOWNLOAD BOOK
Analytical Modelling of Fuel Cells Excerpt :

Analytical Modelling of Fuel Cells, Second Edition, is devoted to the analytical models that help us understand the mechanisms of cell operation. The book contains equations for the rapid evaluation of various aspects of fuel cell performance, including cell potential, rate of electrochemical reactions, rate of transport processes in the cell, and temperature fields in the cell, etc. Furthermore, the book discusses how to develop simple physics-based analytical models. A new chapter is devoted to analytical models of PEM fuel cell impedance, a technique that exhibits explosive growth potential. Finally, the book contains Maple worksheets implementing some of the models discussed. Includes simple physics-based equations for the fuel cell polarization curve Provides analytical solutions for fuel cell impedance Includes simple equations for calculation of temperature shapes in fuel cells Introduces physical descriptions of the basic transport and kinetic phenomena in fuel cells of various types

Polymer Electrolyte Fuel Cells Book

Polymer Electrolyte Fuel Cells


  • Author : Michael Eikerling
  • Publisher : CRC Press
  • Release Date : 2014-09-23
  • Genre: Science
  • Pages : 582
  • ISBN 10 : 9781439854068

DOWNLOAD BOOK
Polymer Electrolyte Fuel Cells Excerpt :

The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of the book focuses on theory and modeling. Theoretical tools and approaches, applied to fuel cell research, are presented in a self-contained manner. Chapters are arranged by different fuel cell materials and components, and sections advance through the hierarchy of scales, starting from molecular-level processes in proton-conducting media or electrocatalytic systems and ending with performance issues at the device level, including electrochemical performance, water management, durability, and analysis of failure mechanisms. Throughout, the book gives numerous examples of formidable scientific challenges as well as of tools to facilitate materials design and development of diagnostic methods. It reveals reserves for performance improvements and uncovers misapprehensions in scientific understanding that have misled or may continue to mislead technological development. An indispensable resource for scientifically minded and practically oriented researchers, this book helps industry leaders to appreciate the contributions of fundamental research, and leaders of fundamental research to appreciate the needs of industry.

Direct Methanol Fuel Cell Technology Book

Direct Methanol Fuel Cell Technology


  • Author : Kingshuk Dutta
  • Publisher : Elsevier
  • Release Date : 2020-02-25
  • Genre: Technology & Engineering
  • Pages : 564
  • ISBN 10 : 9780128191590

DOWNLOAD BOOK
Direct Methanol Fuel Cell Technology Excerpt :

Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells Includes modeling of direct methanol fuel cells to understand their scaling up potentials Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects

Fuel Cell Science and Engineering  2 Volume Set Book

Fuel Cell Science and Engineering 2 Volume Set


  • Author : Detlef Stolten
  • Publisher : John Wiley & Sons
  • Release Date : 2012-10-22
  • Genre: Science
  • Pages : 1268
  • ISBN 10 : 9783527650262

DOWNLOAD BOOK
Fuel Cell Science and Engineering 2 Volume Set Excerpt :

Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers. This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government. This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes, modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book 'Hydrogen and Fuel Cells', published in 2010.

Advances in Fuel Cells Book

Advances in Fuel Cells


  • Author : Anonim
  • Publisher : Elsevier
  • Release Date : 2007-04-23
  • Genre: Technology & Engineering
  • Pages : 499
  • ISBN 10 : 0080471005

DOWNLOAD BOOK
Advances in Fuel Cells Excerpt :

Fuel cells have been recognized to be destined to form the cornerstone of energy technologies in the twenty-first century. The rapid advances in fuel cell system development have left current information available only in scattered journals and Internet sites. Advances in Fuel Cells fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth coverage over a broad scope. The present volume provides informative chapters on thermodynamic performance of fuel cells, macroscopic modeling of polymer-electrolyte membranes, the prospects for phosphonated polymers as proton-exchange fuel cell membranes, polymer electrolyte membranes for direct methanol fuel cells, materials for state of the art PEM fuel cells, and their suitability for operation above 100°C, analytical modelling of direct methanol fuel cells, and methanol reforming processes. Includes contributions by leading experts working in both academic and industrial R&D Disseminates the latest research discoveries A valuable resource for senior undergraduates and graduate students, it provides in-depth coverage over a broad scope

Proton Exchange Membrane Fuel Cells Modeling Book

Proton Exchange Membrane Fuel Cells Modeling


  • Author : Fengge Gao
  • Publisher : John Wiley & Sons
  • Release Date : 2013-02-07
  • Genre: Technology & Engineering
  • Pages : 239
  • ISBN 10 : 9781118566374

DOWNLOAD BOOK
Proton Exchange Membrane Fuel Cells Modeling Excerpt :

The fuel cell is a potential candidate for energy storage andconversion in our future energy mix. It is able to directly convertthe chemical energy stored in fuel (e.g. hydrogen) intoelectricity, without undergoing different intermediary conversionsteps. In the field of mobile and stationary applications, it isconsidered to be one of the future energy solutions. Among the different fuel cell types, the proton exchange membrane(PEM) fuel cell has shown great potential in mobile applications,due to its low operating temperature, solid-state electrolyte andcompactness. This book presents a detailed state of art of PEM fuel cellmodeling, with very detailed physical phenomena equations indifferent physical domains. Examples and a fully coupledmulti-physical 1.2 kW PEMFC model are given help the reader betterunderstand how to use the equations.

Anion Exchange Membrane Fuel Cells Book

Anion Exchange Membrane Fuel Cells


  • Author : Liang An
  • Publisher : Springer
  • Release Date : 2018-03-21
  • Genre: Technology & Engineering
  • Pages : 346
  • ISBN 10 : 9783319713717

DOWNLOAD BOOK
Anion Exchange Membrane Fuel Cells Excerpt :

This book provides a review of the latest advances in anion exchange membrane fuel cells. Starting with an introduction to the field, it then examines the chemistry and catalysis involved in this energy technology. It also includes an introduction to the mathematical modelling of these fuel cells before discussing the system design and performance of real-world systems. Anion exchange membrane fuel cells are an emerging energy technology that has the potential to overcome many of the obstacles of proton exchange membrane fuel cells in terms of the cost, stability, and durability of materials. The book is an essential reference resource for professionals, researchers, and policymakers around the globe working in academia, industry, and government.

Transient Numerical Modeling of Proton exchange membrane Fuel Cells Book

Transient Numerical Modeling of Proton exchange membrane Fuel Cells


  • Author : Aslan Kosakian
  • Publisher : Unknown
  • Release Date : 2021
  • Genre: Hydrogen as fuel
  • Pages : 410
  • ISBN 10 : OCLC:1314816009

DOWNLOAD BOOK
Transient Numerical Modeling of Proton exchange membrane Fuel Cells Excerpt :

Hydrogen fuel cells convert the chemical energy of hydrogen directly into electricity, with the only byproducts being heat and water. The high cost of hydrogen fuel cells due to the expensive platinum catalyst is one of the limiting factors to their global commercialization. Improving fuel-cell performance while reducing the required amount of the catalyst can be achieved by optimizing the water balance in the cell that aims at striking a balance between electrolyte dry-out, which leads to high ohmic resistance, and liquid-water accumulation, which results in reactant starvation. Interpretation of the experimental measurements necessary for making design decisions is, however, often challenging due to the sub-millimeter scale of the fuel-cell components. Mathematical models have become a valuable instrument for gaining insight into the physical processes taking place in fuel cells. Because of the coupled electrochemical reactions, heat, mass, and charge transport that occur at multiple spatial and temporal scales, fuel-cell modeling is a complex task that is best addressed with the help of numerical simulations. As the common fuel-cell characterization experiments are dynamic in nature, their analysis requires transient models. In this thesis, an open-source transient numerical model of a hydrogen fuel cell is developed. The model is applied to interpret electrochemical impedance spectra of fuel cells, highlight the shortcomings of the analytical methods previously used for this purpose, and to better understand liquid-water dynamics in fuel cells. First, the transient model is used to analyze water-management signatures in fuel-cell impedance spectra under dry conditions. This work shows that the low-frequency inductive behavior observed experimentally in hydrogen fuel cells is influenced by the finite-rate water uptake by the electrolyte and water transport within the electrolyte, which impact the frequency and the size of the inductive loops in the spectra. An oh

Direct Alcohol Fuel Cells for Portable Applications Book

Direct Alcohol Fuel Cells for Portable Applications


  • Author : Alexandra M. F. R. Pinto
  • Publisher : Academic Press
  • Release Date : 2018-09-08
  • Genre: Technology & Engineering
  • Pages : 353
  • ISBN 10 : 9780128118986

DOWNLOAD BOOK
Direct Alcohol Fuel Cells for Portable Applications Excerpt :

Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances presents the fundamental concepts, technological advances and challenges in developing, modeling and deploying fuel cells and fuel cell systems for portable devices, including micro and mini fuel cells. The authors review the fundamental science of direct alcohol fuel cells, covering, in detail, thermodynamics, electrode kinetics and electrocatalysis of charge-transfer reactions, mass and heat transfer phenomena, and basic modeling aspects. In addition, the book examines other fuels in DAFCs, such as formic acid, ethylene glycol and glycerol, along with technological aspects and applications, including case studies and cost analysis. Researchers, engineering professionals, fuel cell developers, policymakers and senior graduate students will find this a valuable resource. The book’s comprehensive coverage of fundamentals is especially useful for graduate students, advanced undergraduate students and those new to the field. Provides a comprehensive understanding of the fundamentals of DAFCs and their basic components, design and performance Presents current and complete information on the state-of-the-art of DAFC technology and its most relevant challenges for commercial deployment Includes practical application examples, problems and case studies Covers the use of other fuels, such as formic acid, ethylene glycol and glycerol

Fuel Cells and Hydrogen Production Book

Fuel Cells and Hydrogen Production


  • Author : Timothy E. Lipman
  • Publisher : Springer
  • Release Date : 2018-10-29
  • Genre: Technology & Engineering
  • Pages : 1163
  • ISBN 10 : 1493977881

DOWNLOAD BOOK
Fuel Cells and Hydrogen Production Excerpt :

The expected end of the “oil age” will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today’s fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. This handbook offers concise yet comprehensive coverage of the current state of fuel cell research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types and hydrogen production technologies, and discuss materials and components for these systems. Sustainability and marketing considerations are also covered, including comparisons of fuel cells with alternative technologies.

Solid Oxide Fuel Cells 12  SOFC XII  Book

Solid Oxide Fuel Cells 12 SOFC XII


  • Author : S. C. Singhal
  • Publisher : The Electrochemical Society
  • Release Date : 2011-04-25
  • Genre: Uncategoriezed
  • Pages : 3020
  • ISBN 10 : 9781566778626

DOWNLOAD BOOK
Solid Oxide Fuel Cells 12 SOFC XII Excerpt :

This issue of ECS Transactions contains papers from the Twelfth International Symposium on Solid Oxide Fuel Cells (SOFC-XII),a continuing biennial series of symposia. The papers deal with materials for cell components and fabrication methods for components and complete cells. Also contained are papers on cell electrochemical performance and its modelling, stacks and systems, and prototype testing of SOFC demonstration units for different applications.

Water and Thermal Management of Proton Exchange Membrane Fuel Cells Book

Water and Thermal Management of Proton Exchange Membrane Fuel Cells


  • Author : Kui Jiao
  • Publisher : Elsevier
  • Release Date : 2021-06-05
  • Genre: Science
  • Pages : 400
  • ISBN 10 : 9780323911177

DOWNLOAD BOOK
Water and Thermal Management of Proton Exchange Membrane Fuel Cells Excerpt :

Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. Introduces the transport mechanism for each component of PEMFCs Presents modeling methods at different scales, including component, cell, stack and system scales Provides exercises in PEMFC modeling, along with examples of necessary codes Covers the latest advances in PEMFCs in a convenient and structured manner Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells

Modeling and Control of Fuel Cells Book
Score: 5
From 2 Ratings

Modeling and Control of Fuel Cells


  • Author : M. H. Nehrir
  • Publisher : John Wiley & Sons
  • Release Date : 2009-03-11
  • Genre: Technology & Engineering
  • Pages : 296
  • ISBN 10 : 9780470233283

DOWNLOAD BOOK
Modeling and Control of Fuel Cells Excerpt :

"The emerging fuel cell (FC) technology is growing rapidly in its applications from small-scale portable electronics to large-scale power generation. This book gives students, engineers, and scientists a solid understanding of the FC dynamic modeling and controller design to adapt FCs to particular applications in distributed power generation." "The book begins with a fascinating introduction to the subject, including a brief history of the U.S. electric utility formation and restructuring. Next, it provides coverage of power deregulation and distributed generation (DG), DG types, fuel cell DGs, and the hydrogen economy. Modeling and Control of Fuel Cells is an excellent reference book for students and professionals in electrical, chemical, and mechanical engineering and scientists working in the FC area."--BOOK JACKET.