Big Data Book

Big Data


  • Author : Bill Schmarzo
  • Publisher : John Wiley & Sons
  • Release Date : 2013-10-07
  • Genre: Business & Economics
  • Pages : 240
  • ISBN 10 : 9781118739570

DOWNLOAD BOOK
Big Data Excerpt :

Leverage big data to add value to your business Social media analytics, web-tracking, and other technologies help companies acquire and handle massive amounts of data to better understand their customers, products, competition, and markets. Armed with the insights from big data, companies can improve customer experience and products, add value, and increase return on investment. The tricky part for busy IT professionals and executives is how to get this done, and that's where this practical book comes in. Big Data: Understanding How Data Powers Big Business is a complete how-to guide to leveraging big data to drive business value. Full of practical techniques, real-world examples, and hands-on exercises, this book explores the technologies involved, as well as how to find areas of the organization that can take full advantage of big data. Shows how to decompose current business strategies in order to link big data initiatives to the organization’s value creation processes Explores different value creation processes and models Explains issues surrounding operationalizing big data, including organizational structures, education challenges, and new big data-related roles Provides methodology worksheets and exercises so readers can apply techniques Includes real-world examples from a variety of organizations leveraging big data Big Data: Understanding How Data Powers Big Business is written by one of Big Data's preeminent experts, William Schmarzo. Don't miss his invaluable insights and advice.

Big Data Book
Score: 3.5
From 12 Ratings

Big Data


  • Author : Viktor Mayer-Schönberger
  • Publisher : Houghton Mifflin Harcourt
  • Release Date : 2013
  • Genre: Business & Economics
  • Pages : 257
  • ISBN 10 : 9780544002692

DOWNLOAD BOOK
Big Data Excerpt :

This revelatory exploration of big data, which refers to our newfound ability to crunch vast amounts of information, analyze it instantly and draw profound and surprising conclusions from it, discusses how it will change our lives and what we can do to protect ourselves from its hazards. 75,000 first printing.

Big Data Using Hadoop and Hive Book

Big Data Using Hadoop and Hive


  • Author : Nitin Kumar
  • Publisher : Mercury Learning and Information
  • Release Date : 2021-03-24
  • Genre: Computers
  • Pages : 250
  • ISBN 10 : 9781683926436

DOWNLOAD BOOK
Big Data Using Hadoop and Hive Excerpt :

This book is the basic guide for developers, architects, engineers, and anyone who wants to start leveraging the open-source software Hadoop and Hive to build distributed, scalable concurrent big data applications. Hive will be used for reading, writing, and managing the large, data set files. The book is a concise guide on getting started with an overall understanding on Apache Hadoop and Hive and how they work together to speed up development with minimal effort. It will refer to simple concepts and examples, as they are likely to be the best teaching aids. It will explain the logic, code, and configurations needed to build a successful, distributed, concurrent application, as well as the reason behind those decisions. FEATURES: Shows how to leverage the open-source software Hadoop and Hive to build distributed, scalable, concurrent big data applications Includes material on Hive architecture with various storage types and the Hive query language Features a chapter on big data and how Hadoop can be used to solve the changes around it Explains the basic Hadoop setup, configuration, and optimization

Big Data Book
Score: 4
From 1 Ratings

Big Data


  • Author : Rajkumar Buyya
  • Publisher : Morgan Kaufmann
  • Release Date : 2016-06-07
  • Genre: Computers
  • Pages : 494
  • ISBN 10 : 9780128093467

DOWNLOAD BOOK
Big Data Excerpt :

Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data’s full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. Covers computational platforms supporting Big Data applications Addresses key principles underlying Big Data computing Examines key developments supporting next generation Big Data platforms Explores the challenges in Big Data computing and ways to overcome them Contains expert contributors from both academia and industry

Mastering Spark with R Book

Mastering Spark with R


  • Author : Javier Luraschi
  • Publisher : "O'Reilly Media, Inc."
  • Release Date : 2019-10-07
  • Genre: Computers
  • Pages : 296
  • ISBN 10 : 9781492046325

DOWNLOAD BOOK
Mastering Spark with R Excerpt :

If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions

Big Data Book

Big Data


  • Author : Nathan Marz
  • Publisher : Manning Publications Company
  • Release Date : 2015
  • Genre: Computers
  • Pages : 328
  • ISBN 10 : 1617290343

DOWNLOAD BOOK
Big Data Excerpt :

Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learnin

Big Data  Big Design Book

Big Data Big Design


  • Author : Helen Armstrong
  • Publisher : Chronicle Books
  • Release Date : 2021-11-04
  • Genre: Design
  • Pages : 176
  • ISBN 10 : 9781648960789

DOWNLOAD BOOK
Big Data Big Design Excerpt :

Big Data, Big Design provides designers with the tools they need to harness the potential of machine learning and put it to use for good through thoughtful, human-centered, intentional design. Enter the world of Machine Learning (ML) and Artificial Intelligence (AI) through a design lens in this thoughtful handbook of practical skills, technical knowledge, interviews, essays, and theory, written specifically for designers. Gain an understanding of the design opportunities and design biases that arise when using predictive algorithms. Learn how to place design principles and cultural context at the heart of AI and ML through real-life case studies and examples. This portable, accessible guide will give beginners and more advanced AI and ML users the confidence to make reasoned, thoughtful decisions when implementing ML design solutions.

Big Data Book

Big Data


  • Author : Nasir Raheem
  • Publisher : CRC Press
  • Release Date : 2019-02-21
  • Genre: Computers
  • Pages : 197
  • ISBN 10 : 9780429590511

DOWNLOAD BOOK
Big Data Excerpt :

Big Data: A Tutorial-Based Approach explores the tools and techniques used to bring about the marriage of structured and unstructured data. It focuses on Hadoop Distributed Storage and MapReduce Processing by implementing (i) Tools and Techniques of Hadoop Eco System, (ii) Hadoop Distributed File System Infrastructure, and (iii) efficient MapReduce processing. The book includes Use Cases and Tutorials to provide an integrated approach that answers the ‘What’, ‘How’, and ‘Why’ of Big Data. Features Identifies the primary drivers of Big Data Walks readers through the theory, methods and technology of Big Data Explains how to handle the 4 V’s of Big Data in order to extract value for better business decision making Shows how and why data connectors are critical and necessary for Agile text analytics Includes in-depth tutorials to perform necessary set-ups, installation, configuration and execution of important tasks Explains the command line as well as GUI interface to a powerful data exchange tool between Hadoop and legacy r-dbms databases

Small Wars  Big Data Book

Small Wars Big Data


  • Author : Eli Berman
  • Publisher : Princeton University Press
  • Release Date : 2020-07-14
  • Genre: History
  • Pages : 410
  • ISBN 10 : 9780691204017

DOWNLOAD BOOK
Small Wars Big Data Excerpt :

How a new understanding of warfare can help the military fight today's conflicts more effectively. The way wars are fought has changed starkly over the past sixty years. International military campaigns used to play out between large armies at central fronts. Today's conflicts find major powers facing rebel insurgencies that deploy elusive methods, from improvised explosives to terrorist attacks. Small Wars, Big Data presents a transformative understanding of these contemporary confrontations and how they should be fought. The authors show that a revolution in the study of conflict--enabled by vast data, rich qualitative evidence, and modern methods--yields new insights into terrorism, civil wars, and foreign interventions. Modern warfare is not about struggles over territory but over people; civilians--and the information they might choose to provide--can turn the tide at critical junctures. The authors draw practical lessons from the past two decades of conflict in locations ranging from Latin America and the Middle East to Central and Southeast Asia. Building an information-centric understanding of insurgencies, the authors examine the relationships between rebels, the government, and civilians. This approach serves as a springboard for exploring other aspects of modern conflict, including the suppression of rebel activity, the role of mobile communications networks, the links between aid and violence, and why conventional military methods might provide short-term success but undermine lasting peace. Ultimately the authors show how the stronger side can almost always win the villages, but why that does not guarantee winning the war. Small Wars, Big Data provides groundbreaking perspectives for how small wars can be better strategized and favorably won to the benefit of the local population.

Big Data Book

Big Data


  • Author : Balamurugan Balusamy
  • Publisher : John Wiley & Sons
  • Release Date : 2021-03-15
  • Genre: Mathematics
  • Pages : 368
  • ISBN 10 : 9781119701873

DOWNLOAD BOOK
Big Data Excerpt :

Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information.

Big Data Book

Big Data


  • Author : Saswat Sarangi
  • Publisher : Taylor & Francis
  • Release Date : 2019-09-09
  • Genre: Social Science
  • Pages : 122
  • ISBN 10 : 9781000650976

DOWNLOAD BOOK
Big Data Excerpt :

Big Data is everywhere. It shapes our lives in more ways than we know and understand. This comprehensive introduction unravels the complex terabytes that will continue to shape our lives in ways imagined and unimagined. Drawing on case studies like Amazon, Facebook, the FIFA World Cup and the Aadhaar scheme, this book looks at how Big Data is changing the way we behave, consume and respond to situations in the digital age. It looks at how Big Data has the potential to transform disaster management and healthcare, as well as prove to be authoritarian and exploitative in the wrong hands. The latest offering from the authors of Artificial Intelligence: Evolution, Ethics and Public Policy, this accessibly written volume is essential for the researcher in science and technology studies, media and culture studies, public policy and digital humanities, as well as being a beacon for the general reader to make sense of the digital age.

Framing Big Data Book

Framing Big Data


  • Author : Maria Cristina Paganoni
  • Publisher : Springer
  • Release Date : 2019-07-03
  • Genre: Language Arts & Disciplines
  • Pages : 116
  • ISBN 10 : 9783030167882

DOWNLOAD BOOK
Framing Big Data Excerpt :

This book addresses big data as a socio-technical construct with huge potential for innovation in key sectors such as healthcare, government and business. Big data and its increasingly widespread use in such influential spheres can generate ethically controversial decisions, including questions surrounding privacy, consent and accountability. This book attempts to unpack the epistemological implications of the term ‘big data’, as well as the opportunities and responsibilities which come with it. The author analyses the linguistic texture of the big data narrative in the news media, in healthcare and in EU law on data protection, in order to contribute to its understanding from the critical perspective of language studies. The result is a study which will be of interest to students and scholars working in the digital humanities, corpus linguistics, and discourse studies.

Big Data Analytics Book
Score: 5
From 1 Ratings

Big Data Analytics


  • Author : Venkat Ankam
  • Publisher : Packt Publishing Ltd
  • Release Date : 2016-09-28
  • Genre: Computers
  • Pages : 326
  • ISBN 10 : 9781785889707

DOWNLOAD BOOK
Big Data Analytics Excerpt :

A handy reference guide for data analysts and data scientists to help to obtain value from big data analytics using Spark on Hadoop clusters About This Book This book is based on the latest 2.0 version of Apache Spark and 2.7 version of Hadoop integrated with most commonly used tools. Learn all Spark stack components including latest topics such as DataFrames, DataSets, GraphFrames, Structured Streaming, DataFrame based ML Pipelines and SparkR. Integrations with frameworks such as HDFS, YARN and tools such as Jupyter, Zeppelin, NiFi, Mahout, HBase Spark Connector, GraphFrames, H2O and Hivemall. Who This Book Is For Though this book is primarily aimed at data analysts and data scientists, it will also help architects, programmers, and practitioners. Knowledge of either Spark or Hadoop would be beneficial. It is assumed that you have basic programming background in Scala, Python, SQL, or R programming with basic Linux experience. Working experience within big data environments is not mandatory. What You Will Learn Find out and implement the tools and techniques of big data analytics using Spark on Hadoop clusters with wide variety of tools used with Spark and Hadoop Understand all the Hadoop and Spark ecosystem components Get to know all the Spark components: Spark Core, Spark SQL, DataFrames, DataSets, Conventional and Structured Streaming, MLLib, ML Pipelines and Graphx See batch and real-time data analytics using Spark Core, Spark SQL, and Conventional and Structured Streaming Get to grips with data science and machine learning using MLLib, ML Pipelines, H2O, Hivemall, Graphx, SparkR and Hivemall. In Detail Big Data Analytics book aims at providing the fundamentals of Apache Spark and Hadoop. All Spark components – Spark Core, Spark SQL, DataFrames, Data sets, Conventional Streaming, Structured Streaming, MLlib, Graphx and Hadoop core components – HDFS, MapReduce and Yarn are explored in greater depth with implementation examples on Spark + Hadoop clusters. It

Data Mining and Big Data Book

Data Mining and Big Data


  • Author : Ying Tan
  • Publisher : Springer
  • Release Date : 2016-07-04
  • Genre: Computers
  • Pages : 569
  • ISBN 10 : 9783319409733

DOWNLOAD BOOK
Data Mining and Big Data Excerpt :

The LNCS volume LNCS 9714 constitutes the refereed proceedings of the International Conference on Data Mining and Big Data, DMBD 2016, held in Bali, Indonesia, in June 2016. The 57 papers presented in this volume were carefully reviewed and selected from 115 submissions. The theme of DMBD 2016 is "Serving Life with Data Science". Data mining refers to the activity of going through big data sets to look for relevant or pertinent information.The papers are organized in 10 cohesive sections covering all major topics of the research and development of data mining and big data and one Workshop on Computational Aspects of Pattern Recognition and Computer Vision.

Practical Big Data Analytics Book

Practical Big Data Analytics


  • Author : Nataraj Dasgupta
  • Publisher : Packt Publishing Ltd
  • Release Date : 2018-01-15
  • Genre: Computers
  • Pages : 412
  • ISBN 10 : 9781783554409

DOWNLOAD BOOK
Practical Big Data Analytics Excerpt :

Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well