Data Architecture  A Primer for the Data Scientist Book

Data Architecture A Primer for the Data Scientist


  • Author : W.H. Inmon
  • Publisher : Morgan Kaufmann
  • Release Date : 2014-11-26
  • Genre: Computers
  • Pages : 378
  • ISBN 10 : 9780128020913

DOWNLOAD BOOK
Data Architecture A Primer for the Data Scientist Excerpt :

Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or architecture it can’t be used to its full potential. Data Architecture a Primer for the Data Scientist addresses the larger architectural picture of how Big Data fits with the existing information infrastructure, an essential topic for the data scientist. Drawing upon years of practical experience and using numerous examples and an easy to understand framework. W.H. Inmon, and Daniel Linstedt define the importance of data architecture and how it can be used effectively to harness big data within existing systems. You’ll be able to: Turn textual information into a form that can be analyzed by standard tools. Make the connection between analytics and Big Data Understand how Big Data fits within an existing systems environment Conduct analytics on repetitive and non-repetitive data Discusses the value in Big Data that is often overlooked, non-repetitive data, and why there is significant business value in using it Shows how to turn textual information into a form that can be analyzed by standard tools Explains how Big Data fits within an existing systems environment Presents new opportunities that are afforded by the advent of Big Data Demystifies the murky waters of repetitive and non-repetitive data in Big Data

Data Architecture  A Primer for the Data Scientist Book

Data Architecture A Primer for the Data Scientist


  • Author : W.H. Inmon
  • Publisher : Academic Press
  • Release Date : 2019-04-30
  • Genre: Computers
  • Pages : 431
  • ISBN 10 : 9780128169179

DOWNLOAD BOOK
Data Architecture A Primer for the Data Scientist Excerpt :

Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the "bigger picture" and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together. New case studies include expanded coverage of textual management and analytics New chapters on visualization and big data Discussion of new visualizations of the end-state architecture

A Primer in Financial Data Management Book

A Primer in Financial Data Management


  • Author : Martijn Groot
  • Publisher : Academic Press
  • Release Date : 2017-05-10
  • Genre: Technology & Engineering
  • Pages : 306
  • ISBN 10 : 9780128099001

DOWNLOAD BOOK
A Primer in Financial Data Management Excerpt :

A Primer in Financial Data Management describes concepts and methods, considering financial data management, not as a technological challenge, but as a key asset that underpins effective business management. This broad survey of data management in financial services discusses the data and process needs from the business user, client and regulatory perspectives. Its non-technical descriptions and insights can be used by readers with diverse interests across the financial services industry. The need has never been greater for skills, systems, and methodologies to manage information in financial markets. The volume of data, the diversity of sources, and the power of the tools to process it massively increased. Demands from business, customers, and regulators on transparency, safety, and above all, timely availability of high quality information for decision-making and reporting have grown in tandem, making this book a must read for those working in, or interested in, financial management. Focuses on ways information management can fuel financial institutions’ processes, including regulatory reporting, trade lifecycle management, and customer interaction Covers recent regulatory and technological developments and their implications for optimal financial information management Views data management from a supply chain perspective and discusses challenges and opportunities, including big data technologies and regulatory scrutiny

Data Architecture Book
Score: 1
From 1 Ratings

Data Architecture


  • Author : Charles Tupper
  • Publisher : Elsevier
  • Release Date : 2011-05-09
  • Genre: Computers
  • Pages : 448
  • ISBN 10 : 0123851270

DOWNLOAD BOOK
Data Architecture Excerpt :

Data Architecture: From Zen to Reality explains the principles underlying data architecture, how data evolves with organizations, and the challenges organizations face in structuring and managing their data. Using a holistic approach to the field of data architecture, the book describes proven methods and technologies to solve the complex issues dealing with data. It covers the various applied areas of data, including data modelling and data model management, data quality, data governance, enterprise information management, database design, data warehousing, and warehouse design. This text is a core resource for anyone customizing or aligning data management systems, taking the Zen-like idea of data architecture to an attainable reality. The book presents fundamental concepts of enterprise architecture with definitions and real-world applications and scenarios. It teaches data managers and planners about the challenges of building a data architecture roadmap, structuring the right team, and building a long term set of solutions. It includes the detail needed to illustrate how the fundamental principles are used in current business practice. The book is divided into five sections, one of which addresses the software-application development process, defining tools, techniques, and methods that ensure repeatable results. Data Architecture is intended for people in business management involved with corporate data issues and information technology decisions, ranging from data architects to IT consultants, IT auditors, and data administrators. It is also an ideal reference tool for those in a higher-level education process involved in data or information technology management. Presents fundamental concepts of enterprise architecture with definitions and real-world applications and scenarios Teaches data managers and planners about the challenges of building a data architecture roadmap, structuring the right team, and building a long term set of solutions Includes the deta

Foundations of Data Science Book
Score: 5
From 1 Ratings

Foundations of Data Science


  • Author : Avrim Blum
  • Publisher : Cambridge University Press
  • Release Date : 2020-01-23
  • Genre: Computers
  • Pages : 433
  • ISBN 10 : 9781108485067

DOWNLOAD BOOK
Foundations of Data Science Excerpt :

Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.

Architecting Modern Data Platforms Book

Architecting Modern Data Platforms


  • Author : Jan Kunigk
  • Publisher : "O'Reilly Media, Inc."
  • Release Date : 2018-12-05
  • Genre: Computers
  • Pages : 636
  • ISBN 10 : 9781491969229

DOWNLOAD BOOK
Architecting Modern Data Platforms Excerpt :

There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability

Scalable Big Data Architecture Book

Scalable Big Data Architecture


  • Author : Bahaaldine Azarmi
  • Publisher : Apress
  • Release Date : 2015-12-31
  • Genre: Computers
  • Pages : 147
  • ISBN 10 : 9781484213261

DOWNLOAD BOOK
Scalable Big Data Architecture Excerpt :

This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.

Building a Scalable Data Warehouse with Data Vault 2 0 Book
Score: 4
From 1 Ratings

Building a Scalable Data Warehouse with Data Vault 2 0


  • Author : Dan Linstedt
  • Publisher : Morgan Kaufmann
  • Release Date : 2015-09-15
  • Genre: Computers
  • Pages : 684
  • ISBN 10 : 9780128026489

DOWNLOAD BOOK
Building a Scalable Data Warehouse with Data Vault 2 0 Excerpt :

The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. Important data warehouse technologies and practices. Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse Demystifies data vault modeling with beginning, intermediate, and advanced techniques Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0

Big Data MBA Book
Score: 4
From 1 Ratings

Big Data MBA


  • Author : Bill Schmarzo
  • Publisher : John Wiley & Sons
  • Release Date : 2015-12-11
  • Genre: Computers
  • Pages : 312
  • ISBN 10 : 9781119238843

DOWNLOAD BOOK
Big Data MBA Excerpt :

Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions.

It s All Analytics   Part II Book

It s All Analytics Part II


  • Author : Scott Burk
  • Publisher : CRC Press
  • Release Date : 2021-09-28
  • Genre: Business & Economics
  • Pages : 296
  • ISBN 10 : 9781000433982

DOWNLOAD BOOK
It s All Analytics Part II Excerpt :

Up to 70% and even more of corporate Analytics Efforts fail!!! Even after these corporations have made very large investments, in time, talent, and money, in developing what they thought were good data and analytics programs. Why? Because the executives and decision makers and the entire analytics team have not considered the most important aspect of making these analytics efforts successful. In this Book II of "It’s All Analytics!" series, we describe two primary things: 1) What this "most important aspect" consists of, and 2) How to get this "most important aspect" at the center of the analytics effort and thus make your analytics program successful. This Book II in the series is divided into three main parts: Part I, Organizational Design for Success, discusses ....... The need for a complete company / organizational Alignment of the entire company and its analytics team for making its analytics successful. This means attention to the culture – the company culture culture!!! To be successful, the CEO’s and Decision Makers of a company / organization must be fully cognizant of the cultural focus on ‘establishing a center of excellence in analytics’. Simply, "culture – company culture" is the most important aspect of a successful analytics program. The focus must be on innovation, as this is needed by the analytics team to develop successful algorithms that will lead to greater company efficiency and increased profits. Part II, Data Design for Success, discusses ..... Data is the cornerstone of success with analytics. You can have the best analytics algorithms and models available, but if you do not have good data, efforts will at best be mediocre if not a complete failure. This Part II also goes further into data with descriptions of things like Volatile Data Memory Storage and Non-Volatile Data Memory Storage, in addition to things like data structures and data formats, plus considering things like Cluster Computing, Data Swamps, Muddy Data, Data Mart

Introducing Data Science Book

Introducing Data Science


  • Author : Davy Cielen
  • Publisher : Simon and Schuster
  • Release Date : 2016-05-02
  • Genre: Computers
  • Pages : 320
  • ISBN 10 : 9781638352495

DOWNLOAD BOOK
Introducing Data Science Excerpt :

Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on de

Python for Data Analysis Book
Score: 5
From 1 Ratings

Python for Data Analysis


  • Author : Wes McKinney
  • Publisher : "O'Reilly Media, Inc."
  • Release Date : 2017-09-25
  • Genre: Computers
  • Pages : 676
  • ISBN 10 : 9781491957615

DOWNLOAD BOOK
Python for Data Analysis Excerpt :

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Data Warehousing Book

Data Warehousing


  • Author : Mark Humphries
  • Publisher : Prentice Hall Professional
  • Release Date : 1999
  • Genre: Computers
  • Pages : 384
  • ISBN 10 : 0130809020

DOWNLOAD BOOK
Data Warehousing Excerpt :

PLEASE PROVIDE COURSE INFORMATION PLEASE PROVIDE

Flow Architectures Book

Flow Architectures


  • Author : James Urquhart
  • Publisher : "O'Reilly Media, Inc."
  • Release Date : 2021-01-06
  • Genre: Computers
  • Pages : 254
  • ISBN 10 : 9781492075844

DOWNLOAD BOOK
Flow Architectures Excerpt :

Software development today is embracing events and streaming data, which optimizes not only how technology interacts but also how businesses integrate with one another to meet customer needs. This phenomenon, called flow, consists of patterns and standards that determine which activity and related data is communicated between parties over the internet. This book explores critical implications of that evolution: What happens when events and data streams help you discover new activity sources to enhance existing businesses or drive new markets? What technologies and architectural patterns can position your company for opportunities enabled by flow? James Urquhart, global field CTO at VMware, guides enterprise architects, software developers, and product managers through the process. Learn the benefits of flow dynamics when businesses, governments, and other institutions integrate via events and data streams Understand the value chain for flow integration through Wardley mapping visualization and promise theory modeling Walk through basic concepts behind today's event-driven systems marketplace Learn how today's integration patterns will influence the real-time events flow in the future Explore why companies should architect and build software today to take advantage of flow in coming years

Data Science For Dummies Book

Data Science For Dummies


  • Author : Lillian Pierson
  • Publisher : John Wiley & Sons
  • Release Date : 2017-03-06
  • Genre: Computers
  • Pages : 384
  • ISBN 10 : 9781119327639

DOWNLOAD BOOK
Data Science For Dummies Excerpt :

Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.