Ferroelectric Materials for Energy Applications Book

Ferroelectric Materials for Energy Applications

  • Author : Haitao Huang
  • Publisher : John Wiley & Sons
  • Release Date : 2019-01-04
  • Genre: Technology & Engineering
  • Pages : 384
  • ISBN 10 : 9783527342716

Ferroelectric Materials for Energy Applications Excerpt :

Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field. Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications. -Covers a highly application-oriented subject with great potential for energy conversion and storage applications. -Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers -Edited by the "father of integrated ferroelectrics" Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.

Ferroelectric Materials for Energy Harvesting and Storage Book

Ferroelectric Materials for Energy Harvesting and Storage

  • Author : Deepam Maurya
  • Publisher : Woodhead Publishing
  • Release Date : 2020-10-14
  • Genre: Technology & Engineering
  • Pages : 372
  • ISBN 10 : 9780081028797

Ferroelectric Materials for Energy Harvesting and Storage Excerpt :

The need to more efficiently harvest energy for electronics has spurred investigation into materials that can harvest energy from locally abundant sources. Ferroelectric Materials for Energy Harvesting and Storage is the first book to bring together fundamental mechanisms for harvesting various abundant energy sources using ferroelectric and piezoelectric materials. The authors discuss strategies of designing materials for efficiently harvesting energy sources like solar, wind, wave, temperature fluctuations, mechanical vibrations, biomechanical motion, and stray magnetic fields. In addition, concepts of the high density energy storage using ferroelectric materials is explored. Ferroelectric Materials for Energy Harvesting and Storage is appropriate for those working in materials science and engineering, physics, chemistry and electrical engineering disciplines. Reviews wide range of energy harvesting including solar, wind, biomechanical and more Discusses ferroelectric materials and their application to high energy density capacitors Includes review of fundamental mechanisms of energy harvesting and energy solutions, their design and current applications, and future trends and challenges

Materials in Energy Conversion  Harvesting  and Storage Book

Materials in Energy Conversion Harvesting and Storage

  • Author : Kathy Lu
  • Publisher : John Wiley & Sons
  • Release Date : 2014-08-07
  • Genre: Technology & Engineering
  • Pages : 448
  • ISBN 10 : 9781118892381

Materials in Energy Conversion Harvesting and Storage Excerpt :

First authored book to address materials' role in thequest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are someof many facets of energy challenges covered in current research.However, there has not been a monograph that directly covers aspectrum of materials issues in the context of energy conversion,harvesting and storage. Addressing one of the most pressingproblems of our time, Materials in Energy Conversion,Harvesting, and Storage illuminates the roles and performancerequirements of materials in energy and demonstrates why energymaterials are as critical and far-reaching as energy itself. Eachchapter starts out by explaining the role of a specific energyprocess in today’s energy landscape, followed by explanationof the fundamental energy conversion, harvesting, and storageprocesses. Well-researched and coherently written, Materials in EnergyConversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of differentenergy sources Energy production processes involving material uses andperformance requirements in fossil, nuclear, solar, bio, wind,hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogenstorage) and materials needs Throughout the book, illustrations and images clarify andsimplify core concepts, techniques, and processes. References atthe end of each chapter serve as a gateway to the primaryliterature in the field. All chapters are self-contained units, enabling instructors toeasily adapt this book for coursework. This book is suitable forstudents and professors in science and engineering who look toobtain comprehensive understanding of different energy processesand materials issues. In setting forth the latest advances and newfrontiers of research, experienced materials researchers andengineers can utilize it as a comprehensive energy materialreference bo

Micro and Nano Energy Harvesting Technologies Book

Micro and Nano Energy Harvesting Technologies

  • Author : Bin Yang
  • Publisher : Artech House
  • Release Date : 2014-12-01
  • Genre: Technology & Engineering
  • Pages : 306
  • ISBN 10 : 9781608078158

Micro and Nano Energy Harvesting Technologies Excerpt :

Seeking renewable and clean energies is essential for releasing the heavy reliance on mineral-based energy and remedying the threat of global warming to our environment. In the last decade, explosive growth in research and development efforts devoted to microelectromechanical systems (MEMS) technology and nanowires-related nanotechnology have paved a great foundation for new mechanisms of harvesting mechanical energy at the micro/nano-meter scale. MEMS-based inertial sensors have been the enabler for numerous applications associated with smart phones, tablets, and mobile electronics. This is a valuable reference for all those faced with the challenging problems created by the ever-increasing interest in MEMS and nanotechnology-based energy harvesters and their applications. This book presents fundamental physics, theoretical design, and method of modeling for four mainstream energy harvesting mechanisms -- piezoelectric, electromagnetic, electrostatic, and triboelectric. Readers are provided with a comprehensive technical review and historical view of each mechanism. The authors also present current challenges in energy harvesting technology, technical reviews, design requirements, case studies, along with unique and representative examples of energy harvester applications.

Advances in Bio Based Fiber Book

Advances in Bio Based Fiber

  • Author : Sanjay Mavinkere Rangappa
  • Publisher : Woodhead Publishing
  • Release Date : 2021-12-09
  • Genre: Technology & Engineering
  • Pages : 834
  • ISBN 10 : 9780128245446

Advances in Bio Based Fiber Excerpt :

Advances in Bio-Based Fibres: Moving Towards a Green Society describes many novel natural fibers, their specific synthesis and characterization methods, their environmental sustainability values, their compatibility with polymer composites, and a wide range of innovative commercial engineering applications. As bio-based fiber polymer composites possess excellent mechanical, electrical and thermal properties, along with highly sustainable properties, they are an important technology for manufacturers and materials scientists seeking to improve the sustainability of their industries. This cutting-edge book draws on the latest industry practice and academic research to provide advice on technologies with applications in industries, including packaging, automotive, aerospace, biomedical and structural engineering. Provides technical data on advanced material properties, including electrical and rheological Gives a comprehensive guide to appraising and applying this technology to improve sustainability, including lifecycle assessment and recyclability Includes advice on the latest modeling techniques for designing with these materials

Waste Energy Harvesting Book

Waste Energy Harvesting

  • Author : Ling Bing Kong
  • Publisher : Springer Science & Business Media
  • Release Date : 2014-03-25
  • Genre: Technology & Engineering
  • Pages : 592
  • ISBN 10 : 9783642546341

Waste Energy Harvesting Excerpt :

Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

Polymer Engineered Nanostructures for Advanced Energy Applications Book
Score: 5
From 1 Ratings

Polymer Engineered Nanostructures for Advanced Energy Applications

  • Author : Zhiqun Lin
  • Publisher : Springer
  • Release Date : 2017-06-16
  • Genre: Technology & Engineering
  • Pages : 701
  • ISBN 10 : 9783319570037

Polymer Engineered Nanostructures for Advanced Energy Applications Excerpt :

This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic–inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.

Piezoelectric Energy Harvesting Book
Score: 5
From 1 Ratings

Piezoelectric Energy Harvesting

  • Author : Alper Erturk
  • Publisher : John Wiley & Sons
  • Release Date : 2011-04-04
  • Genre: Technology & Engineering
  • Pages : 416
  • ISBN 10 : 1119991358

Piezoelectric Energy Harvesting Excerpt :

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Nanoscale Ferroelectric Multiferroic Materials for Energy Harvesting Applications Book

Nanoscale Ferroelectric Multiferroic Materials for Energy Harvesting Applications

  • Author : Hideo Kimura
  • Publisher : Elsevier
  • Release Date : 2019-02-22
  • Genre: Technology & Engineering
  • Pages : 252
  • ISBN 10 : 9780128145005

Nanoscale Ferroelectric Multiferroic Materials for Energy Harvesting Applications Excerpt :

Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications presents the latest information in the emerging field of multiferroic materials research, exploring applications in energy conversion and harvesting at the nanoscale. The book covers crystal and microstructure, ferroelectric, piezoelectric and multiferroic physical properties, along with their characterization. Special attention is given to the design and tailoring of ferroelectric, magnetic and multiferroic materials and their interaction among ferroics. The fundamentals of energy conversion are incorporated, along with the requirements of materials for this process. Finally, a range of applications is presented, demonstrating the progression from fundamentals to applied science. This essential resource describes the link between the basic physical properties of these materials and their applications in the field of energy harvest. It will be a useful resource for graduate students, early career researchers, academics and industry professionals working in areas related to energy conversion. Bridges the gap between the fundamentals and applications of ferroelectric and multiferroic materials for energy harvesting Demonstrates how a range of nanomaterials play an important role in the creation of efficient energy harvesting systems Provides new solutions for the fabrication of electronic devices for various applications

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices Book
Score: 5
From 1 Ratings

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices

  • Author : Vijay B. Pawade
  • Publisher : CRC Press
  • Release Date : 2020-05-21
  • Genre: Science
  • Pages : 328
  • ISBN 10 : 9781000073201

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices Excerpt :

Metal oxide nanoparticles exhibit potential applications in energy and environmental fields, such as solar cells, fuel cells, hydrogen energy, and energy storage devices. This book covers all points from synthesis, properties, and applications of transition metal oxide nanoparticle materials in energy storage and conversion devices. Aimed at graduate-level students and researchers associated with the energy and environment sector, this book addresses the application of nontoxic and environmentally friendly metal oxide materials for a clean environment and deals with synthesis properties and application metal oxides materials for energy conversion, energy storage, and hydrogen generation.

Magnetic Nanostructured Materials Book

Magnetic Nanostructured Materials

  • Author : Ahmed A. El Gendy
  • Publisher : Elsevier
  • Release Date : 2018-06-29
  • Genre: Science
  • Pages : 391
  • ISBN 10 : 9780128139059

Magnetic Nanostructured Materials Excerpt :

Magnetic Nanostructured Materials: From Lab to Fab presents a complete overview of the translation of nanostructured materials into realistic applications, drawing on the most recent research in the field to discuss the fundamentals, synthesis and characterization of nanomagnetics. A wide spectrum of nanomagnetic applications is included, covering industrial, environmental and biomedical fields, and using chemical, physical and biological methods. Materials such as Fe, Co, CoxC, MnGa, GdSi, ferrite nanoparticles and thin films are highlighted, with their potential applications discussed, such as magnetic refrigeration, energy harvesting, magnetic sensors, hyperthermia, MRI, drug delivery, permanent magnets, and data storage devices. Offering interdisciplinary knowledge on the materials science of nanostructured materials and magnetics, this book will be of interest to researchers in materials science, engineering, physics and chemistry with interest in magnetic nanomaterials, as well as postgraduate students and professionals in industry and government. Provides interdisciplinary knowledge on the materials science of nanostructured materials and magnetics Aids in the understanding of complex fundamentals and synthesis methods for magnetic nanomaterials Includes examples of real applications Shows how laboratory work on magnetic nanoparticles connects to industrial implementation and applications

Textile Based Energy Harvesting and Storage Devices for Wearable Electronics Book

Textile Based Energy Harvesting and Storage Devices for Wearable Electronics

  • Author : Xing Fan
  • Publisher : John Wiley & Sons
  • Release Date : 2021-12-13
  • Genre: Technology & Engineering
  • Pages : 448
  • ISBN 10 : 9783527345243

Textile Based Energy Harvesting and Storage Devices for Wearable Electronics Excerpt :

Discover state-of-the-art developments in textile-based wearable and stretchable electronics from leaders in the field In Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics, renowned researchers Professor Xing Fan and his co-authors deliver an insightful and rigorous exploration of textile-based energy harvesting and storage systems. The book covers the principles of smart fibers and fabrics, as well as their fabrication methods. It introduces, in detail, several fiber- and fabric-based energy harvesting and storage devices, including photovoltaics, piezoelectrics, triboelectrics, supercapacitors, batteries, and sensing and self-powered electric fabrics. The authors also discuss expanded functions of smart fabrics, like stretchability, hydrophobicity, air permeability and color-changeability. The book includes sections on emerging electronic fibers and textiles, including stress-sensing, strain-sensing, and chemical-sensing textiles, as well as emerging self-powered electronic textiles. Textile-Based Energy Harvesting and Storage Devices for Wearable Electronics concludes with an in-depth treatment of upcoming challenges, opportunities, and commercialization requirements for electronic textiles, providing valuable insight into a highly lucrative new commercial sector. The book also offers: A thorough introduction to the evolution from classical functional fibers to intelligent fibers and textiles An exploration of typical film deposition technologies, like dry-process film deposition and wet-process technologies for roll-to-roll device fabrication Practical discussions of the fabrication process of intelligent fibers and textiles, including the synthesis of classical functional fibers and nano/micro assembly on fiber materials In-depth examinations of energy harvesting and energy storage fibers, including photovoltaic, piezoelectric, and supercapacitor fibers Perfect for materials scientists, engineering scientists, and sensor developers, T

Advances in Non volatile Memory and Storage Technology Book

Advances in Non volatile Memory and Storage Technology

  • Author : Yoshio Nishi
  • Publisher : Woodhead Publishing
  • Release Date : 2019-06-15
  • Genre: Science
  • Pages : 662
  • ISBN 10 : 9780081025857

Advances in Non volatile Memory and Storage Technology Excerpt :

Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices. Discusses emerging devices and research trends, such as neuromorphic computing and oxide-based ferroelectric memories Provides an overview on developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping and resistive random access memory