Nanostructures in Ferroelectric Films for Energy Applications Book

Nanostructures in Ferroelectric Films for Energy Applications

  • Author : Jun Ouyang
  • Publisher : Elsevier
  • Release Date : 2019-06-06
  • Genre: Technology & Engineering
  • Pages : 386
  • ISBN 10 : 9780128138571

Nanostructures in Ferroelectric Films for Energy Applications Excerpt :

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals. Provides the necessary components for the systematic study of the structure-property relationship in ferroelectric thin film materials using case studies in energy applications Written by leading experts in the research areas of piezoelectrics, electrocalorics, ferroelectric dielectrics (especially in capacitive energy storage), ferroelectric domains, and ferroelectric-Si technology Includes a well balanced mix of theoretical design and simulation, materials processing and integration, and dedicated characterization methods of the involved nanostructures

Polymer Engineered Nanostructures for Advanced Energy Applications Book
Score: 5
From 1 Ratings

Polymer Engineered Nanostructures for Advanced Energy Applications

  • Author : Zhiqun Lin
  • Publisher : Springer
  • Release Date : 2017-06-16
  • Genre: Technology & Engineering
  • Pages : 701
  • ISBN 10 : 9783319570037

Polymer Engineered Nanostructures for Advanced Energy Applications Excerpt :

This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic–inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.

Nanoscale Ferroelectric Multiferroic Materials for Energy Harvesting Applications Book

Nanoscale Ferroelectric Multiferroic Materials for Energy Harvesting Applications

  • Author : Hideo Kimura
  • Publisher : Elsevier
  • Release Date : 2019-02-22
  • Genre: Technology & Engineering
  • Pages : 252
  • ISBN 10 : 9780128145005

Nanoscale Ferroelectric Multiferroic Materials for Energy Harvesting Applications Excerpt :

Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications presents the latest information in the emerging field of multiferroic materials research, exploring applications in energy conversion and harvesting at the nanoscale. The book covers crystal and microstructure, ferroelectric, piezoelectric and multiferroic physical properties, along with their characterization. Special attention is given to the design and tailoring of ferroelectric, magnetic and multiferroic materials and their interaction among ferroics. The fundamentals of energy conversion are incorporated, along with the requirements of materials for this process. Finally, a range of applications is presented, demonstrating the progression from fundamentals to applied science. This essential resource describes the link between the basic physical properties of these materials and their applications in the field of energy harvest. It will be a useful resource for graduate students, early career researchers, academics and industry professionals working in areas related to energy conversion. Bridges the gap between the fundamentals and applications of ferroelectric and multiferroic materials for energy harvesting Demonstrates how a range of nanomaterials play an important role in the creation of efficient energy harvesting systems Provides new solutions for the fabrication of electronic devices for various applications

Ferroelectric Materials for Energy Applications Book

Ferroelectric Materials for Energy Applications

  • Author : Haitao Huang
  • Publisher : John Wiley & Sons
  • Release Date : 2019-01-04
  • Genre: Technology & Engineering
  • Pages : 384
  • ISBN 10 : 9783527342716

Ferroelectric Materials for Energy Applications Excerpt :

Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field. Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications. -Covers a highly application-oriented subject with great potential for energy conversion and storage applications. -Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers -Edited by the "father of integrated ferroelectrics" Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.

Advanced Ceramics for Energy and Environmental Applications Book
Score: 5
From 2 Ratings

Advanced Ceramics for Energy and Environmental Applications

  • Author : Akshay Kumar
  • Publisher : CRC Press
  • Release Date : 2021-11-25
  • Genre: Technology & Engineering
  • Pages : 394
  • ISBN 10 : 9781000404715

Advanced Ceramics for Energy and Environmental Applications Excerpt :

Advanced Ceramics possess various unique properties and are able to withstand harsh environments. The aim of this book is to cover various aspects of the advanced ceramics like carbides, nitrides and oxides for energy and environment related applications. Advanced ceramics with additional functionality propose significant potential for greater impact in the field of energy and environmental technologies. This book focuses on the nanostructured ceramics synthesis, properties, structure-property relation and application in the area of energy and environment. It covers the high impact work from around 50 leading researchers throughout the world working in this field. This will help metallurgists, biologists, mechanical engineers, ceramicists, material scientists and researchers working in the nanotechnology field with inclusion of every aspect of advanced ceramics for energy and environmental applications.

Purification of Laboratory Chemicals Book

Purification of Laboratory Chemicals

  • Author : W.L.F. Armarego
  • Publisher : Butterworth-Heinemann
  • Release Date : 2022-08-27
  • Genre: Science
  • Pages : 687
  • ISBN 10 : 9780323958288

Purification of Laboratory Chemicals Excerpt :

Purification of Laboratory Chemicals: Part Two, Inorganic Chemicals, Catalysts, Biochemicals, Physiologically Active Chemicals, Nanomaterials, Ninth Edition describes contemporary methods for the purification of chemical compounds. The work includes tabulated methods taken from literature for purifying thousands of individual commercially available chemical substances. To help in applying this information, the more common processes currently used for purification in chemical laboratories and new methods are discussed. For dealing with substances not separately listed, another chapter is included, setting out the usual methods for purifying specific classes of compounds. Laboratory workers, whether carrying out research or routine work, will invariably need to consult this book. Apart from the procedures described, the large amount of physical data about listed chemicals is essential. This fully updated, revised and expanded new edition includes the purification of many new substances that have been available commercially since 2017, along with previously available substances which have found new applications. Features empirical formulae and formula weights for every entry References all important applications of each substance Includes updated CAS registry numbers Covers the latest commercial chemical products, including pharmaceutical chemicals and safety/hazard materials Provides expanded coverage of laboratory/work practices and purification methods

21st Century Nanoscience Book

21st Century Nanoscience

  • Author : Klaus D. Sattler
  • Publisher : CRC Press
  • Release Date : 2021-11-05
  • Genre: Science
  • Pages : 4142
  • ISBN 10 : 9781351260558

21st Century Nanoscience Excerpt :

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

21st Century Nanoscience     A Handbook Book

21st Century Nanoscience A Handbook

  • Author : Klaus D. Sattler
  • Publisher : CRC Press
  • Release Date : 2019-11-26
  • Genre: Technology & Engineering
  • Pages : 496
  • ISBN 10 : 9781000651737

21st Century Nanoscience A Handbook Excerpt :

This up-to-date reference is the most comprehensive summary of the field of nanoscience and its applications. It begins with fundamental properties at the nanoscale and then goes well beyond into the practical aspects of the design, synthesis, and use of nanomaterials in various industries. It emphasizes the vast strides made in the field over the past decade – the chapters focus on new, promising directions as well as emerging theoretical and experimental methods. The contents incorporate experimental data and graphs where appropriate, as well as supporting tables and figures with a tutorial approach.

Magnetic Nanostructured Materials Book

Magnetic Nanostructured Materials

  • Author : Ahmed A. El Gendy
  • Publisher : Elsevier
  • Release Date : 2018-06-29
  • Genre: Science
  • Pages : 391
  • ISBN 10 : 9780128139059

Magnetic Nanostructured Materials Excerpt :

Magnetic Nanostructured Materials: From Lab to Fab presents a complete overview of the translation of nanostructured materials into realistic applications, drawing on the most recent research in the field to discuss the fundamentals, synthesis and characterization of nanomagnetics. A wide spectrum of nanomagnetic applications is included, covering industrial, environmental and biomedical fields, and using chemical, physical and biological methods. Materials such as Fe, Co, CoxC, MnGa, GdSi, ferrite nanoparticles and thin films are highlighted, with their potential applications discussed, such as magnetic refrigeration, energy harvesting, magnetic sensors, hyperthermia, MRI, drug delivery, permanent magnets, and data storage devices. Offering interdisciplinary knowledge on the materials science of nanostructured materials and magnetics, this book will be of interest to researchers in materials science, engineering, physics and chemistry with interest in magnetic nanomaterials, as well as postgraduate students and professionals in industry and government. Provides interdisciplinary knowledge on the materials science of nanostructured materials and magnetics Aids in the understanding of complex fundamentals and synthesis methods for magnetic nanomaterials Includes examples of real applications Shows how laboratory work on magnetic nanoparticles connects to industrial implementation and applications

Handbook of Nanophysics Book

Handbook of Nanophysics

  • Author : Klaus D. Sattler
  • Publisher : CRC Press
  • Release Date : 2016-04-19
  • Genre: Science
  • Pages : 716
  • ISBN 10 : 1420075454

Handbook of Nanophysics Excerpt :

In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume provides an overview of the major categories of nanoparticles, including amorphous, magnetic, ferroelectric, and zinc oxide nanoparticles; helium nanodroplets; and silicon, tetrapod-shaped semiconductor, magnetic ion-doped semiconductor, and natural polysaccharide nanocrystals. It also describes their properties and interactions. In the group of chapters on nanofluids, the expert contributors discuss the stability of nanodispersions, liquid slip at the molecular scale, thermophysical properties, and heat transfer. They go on to examine the theory, self-assembly, and teleportation of quantum dots. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Nanostructured Multiferroics Book

Nanostructured Multiferroics

  • Author : Raneesh Balakrishnan
  • Publisher : John Wiley & Sons
  • Release Date : 2021-03-05
  • Genre: Technology & Engineering
  • Pages : 272
  • ISBN 10 : 9783527809936

Nanostructured Multiferroics Excerpt :

Explore the state of the art in multiferroic materials with this cutting-edge resource Nanostructured Multiferroics delivers an overview of recent research developments in the area of nanostructured multiferroics, along with their preparation, characterization, and applications. Covering single-phase and composite multiferroics, nanomultiferroics, and multiferroic composites, the book explains their physical properties, the underlying physical principles, and the technology and application aspects of the materials, including energy harvesting and spintronics. With multiferroics undergoing a renaissance of renewed interest and development in the past few years, and with promising new breakthroughs in areas like superconductivity, spintronics, and quantum computing, Nanostructured Multiferroics offers both experienced scientists and young researchers inspirational and informative resources likely to spark ideas for further research. Along with chapters discussing topics such as the specific heat and magnetocaloric properties of manganite-based multiferroics for cryo-cooling applications and the multiferroic properties of barium-doped BiFeO3 particles, further topics are: * A comprehensive discussion about the physical properties of multiferroic nanocomposites * An exploration of the basic theory underpinning a variety of multiferroic interactions * An in-depth analysis of the engineering functionality in nanomultiferroics * An introduction to nanostructured multiferroics accompanied by discussions of their synthesis, characterization, and common applications * A treatment of multiferroic materials, as well as single-phase and composite multiferroics * An examination of the use of nanostructured multiferroics in the field of spintronics Perfect for materials scientists, Nanostructured Multiferroics will also earn a place in the libraries of solid-state physicists and chemists who seek to improve their understanding of the fundamentals of, and recent advances made in, m

Frontiers in Chemistry  Rising Stars Book

Frontiers in Chemistry Rising Stars

  • Author : Steve Suib
  • Publisher : Frontiers Media SA
  • Release Date : 2020-04-17
  • Genre: Uncategoriezed
  • Pages : null
  • ISBN 10 : 9782889635801

Frontiers in Chemistry Rising Stars Excerpt :

The Frontiers in Chemistry Editorial Office team are delighted to present the inaugural “Frontiers in Chemistry: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the chemical sciences, and presents advances in theory, experiment and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Chemistry Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank our Chief Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact. Laurent Mathey, PhD Journal Development Manager

Thin Film Structures in Energy Applications Book
Score: 4.5
From 4 Ratings

Thin Film Structures in Energy Applications

  • Author : Suresh Babu Krishna Moorthy
  • Publisher : Springer
  • Release Date : 2015-03-10
  • Genre: Technology & Engineering
  • Pages : 292
  • ISBN 10 : 9783319147741

Thin Film Structures in Energy Applications Excerpt :

This book provides a comprehensive overview of thin film structures in energy applications. Each chapter contains both fundamentals principles for each thin film structure as well as the relevant energy application technologies. The authors cover thin films for a variety of energy sectors including inorganic and organic solar cells, DSSCs, solid oxide fuel cells, thermoelectrics, phosphors and cutting tools.

Virus Based Nanomaterials and Nanostructures Book

Virus Based Nanomaterials and Nanostructures

  • Author : Dong-Wook Han
  • Publisher : MDPI
  • Release Date : 2020-06-23
  • Genre: Science
  • Pages : 178
  • ISBN 10 : 9783039286942

Virus Based Nanomaterials and Nanostructures Excerpt :

A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.

Metal Oxide Based Thin Film Structures Book

Metal Oxide Based Thin Film Structures

  • Author : Nini Pryds
  • Publisher : Elsevier
  • Release Date : 2017-09-07
  • Genre: Technology & Engineering
  • Pages : 560
  • ISBN 10 : 9780081017524

Metal Oxide Based Thin Film Structures Excerpt :

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike