Practical Big Data Analytics Book

Practical Big Data Analytics

  • Author : Nataraj Dasgupta
  • Publisher : Packt Publishing Ltd
  • Release Date : 2018-01-15
  • Genre: Computers
  • Pages : 412
  • ISBN 10 : 9781783554409

Practical Big Data Analytics Excerpt :

Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well

Big Data Analytics Book

Big Data Analytics

  • Author : Kim H. Pries
  • Publisher : CRC Press
  • Release Date : 2015-02-05
  • Genre: Computers
  • Pages : 576
  • ISBN 10 : 9781482234527

Big Data Analytics Excerpt :

With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.Comparing and contrasting the dif

Practical Data Science with Hadoop and Spark Book

Practical Data Science with Hadoop and Spark

  • Author : Ofer Mendelevitch
  • Publisher : Addison-Wesley Professional
  • Release Date : 2016-12-08
  • Genre: Computers
  • Pages : 256
  • ISBN 10 : 9780134029726

Practical Data Science with Hadoop and Spark Excerpt :

The Complete Guide to Data Science with Hadoop—For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language

Practical Data Science with R Book

Practical Data Science with R

  • Author : John Mount
  • Publisher : Simon and Schuster
  • Release Date : 2019-11-17
  • Genre: Computers
  • Pages : 568
  • ISBN 10 : 9781638352747

Practical Data Science with R Excerpt :

This invaluable addition to any data scientist's library shows you how to apply the R programming language and useful statistical techniques to everyday business situations as well as how to effectively present results to audiences of all levels. To answer the ever-increasing demand for machine learning and analysis, this new edition boasts additional R tools, modeling techniques, and more. Practical Data Science with R, Second Edition takes a practice-oriented approach to explaining basic principles in the ever-expanding field of data science. You'll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Practical Data Analysis Book

Practical Data Analysis

  • Author : Hector Cuesta
  • Publisher : Packt Publishing Ltd
  • Release Date : 2013-10-22
  • Genre: Computers
  • Pages : 360
  • ISBN 10 : 9781783281008

Practical Data Analysis Excerpt :

Each chapter of the book quickly introduces a key ‘theme’ of Data Analysis, before immersing you in the practical aspects of each theme. You’ll learn quickly how to perform all aspects of Data Analysis.Practical Data Analysis is a book ideal for home and small business users who want to slice & dice the data they have on hand with minimum hassle.

Big Data Analytics   a Practical Approach Book

Big Data Analytics a Practical Approach

  • Author : Venkatesh Gauri Shankar
  • Publisher : Walnut Publication
  • Release Date : 2020-11-06
  • Genre: Uncategoriezed
  • Pages : null
  • ISBN 10 : 1954399677

Big Data Analytics a Practical Approach Excerpt :

The book is organized in such a way that it covers the practical approaches and syllabus of Big Data Analytics prescribed by different universities and colleges for B.Tech./BE (Data Science), M.Tech./ME (Data Science), MSc. (Big Data Analytics), B.Tech (CSE), B.Tech (IT) and all other branches related to Big Data, ML and AI. This book offers a deep understanding of the essential practical concept of Big Data Analytics, including Hadoop, Spark and Tableau. This book is primarily designed to introduce some of the fundamental concepts with practical approaches of Big Data Analytics for undergraduate and postgraduate students in Data Science, CSE, and IT. The concepts in each chapter are explained coherently and unequivocally. Hence it enables the students to gain knowledge in the practical field of Big Data concepts with ease.

Data Science and Big Data Analytics Book

Data Science and Big Data Analytics

  • Author : EMC Education Services
  • Publisher : John Wiley & Sons
  • Release Date : 2015-01-05
  • Genre: Computers
  • Pages : 432
  • ISBN 10 : 9781118876053

Data Science and Big Data Analytics Excerpt :

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available from the book’s page at Wiley which you can find on the Wiley site by searching for the ISBN 9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Practical Data Science Cookbook Book

Practical Data Science Cookbook

  • Author : Prabhanjan Tattar
  • Publisher : Packt Publishing Ltd
  • Release Date : 2017-06-29
  • Genre: Computers
  • Pages : 434
  • ISBN 10 : 9781787123267

Practical Data Science Cookbook Excerpt :

Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn Learn and understand the installation procedure and environment required for R and Python on various platforms Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python Build a predictive model and an exploratory model Analyze the results of your model and create reports on the acquired data Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each

A Practical Guide to Analytics for Governments Book

A Practical Guide to Analytics for Governments

  • Author : Marie Lowman
  • Publisher : John Wiley & Sons
  • Release Date : 2017-05-05
  • Genre: Business & Economics
  • Pages : 224
  • ISBN 10 : 9781119362852

A Practical Guide to Analytics for Governments Excerpt :

Analytics can make government work better—this book shows you how A Practical Guide to Analytics for Governments provides demonstrations of real-world analytics applications for legislators, policy-makers, and support staff at the federal, state, and local levels. Big data and analytics are transforming industries across the board, and government can reap many of those same benefits by applying analytics to processes and programs already in place. From healthcare delivery and child well-being, to crime and program fraud, analytics can—in fact, already does—transform the way government works. This book shows you how analytics can be implemented in your own milieu: What is the downstream impact of new legislation? How can we make programs more efficient? Is it possible to predict policy outcomes without analytics? How do I get started building analytics into my government organization? The answers are all here, with accessible explanations and useful advice from an expert in the field. Analytics allows you to mine your data to create a holistic picture of your constituents; this model helps you tailor programs, fine-tune legislation, and serve the populace more effectively. This book walks you through analytics as applied to government, and shows you how to reap Big data's benefits at whatever level necessary. Learn how analytics is already transforming government service delivery Delve into the digital healthcare revolution Use analytics to improve education, juvenile justice, and other child-focused areas Apply analytics to transportation, criminal justice, fraud, and much more Legislators and policy makers have plenty of great ideas—but how do they put those ideas into play? Analytics can play a crucial role in getting the job done well. A Practical Guide to Analytics for Governments provides advice, perspective, and real-world guidance for public servants everywhere.

Big Data Analytics with R Book

Big Data Analytics with R

  • Author : Simon Walkowiak
  • Publisher : Packt Publishing Ltd
  • Release Date : 2016-07-29
  • Genre: Computers
  • Pages : 506
  • ISBN 10 : 9781786463722

Big Data Analytics with R Excerpt :

Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.

Practical Data Science Book

Practical Data Science

  • Author : Andreas François Vermeulen
  • Publisher : Apress
  • Release Date : 2018-02-21
  • Genre: Computers
  • Pages : 805
  • ISBN 10 : 9781484230541

Practical Data Science Excerpt :

Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results Who This Book Is For Data scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers

Practical Data Science with SAP Book

Practical Data Science with SAP

  • Author : Greg Foss
  • Publisher : O'Reilly Media
  • Release Date : 2019-09-18
  • Genre: Computers
  • Pages : 332
  • ISBN 10 : 9781492046417

Practical Data Science with SAP Excerpt :

Learn how to fuse today's data science tools and techniques with your SAP enterprise resource planning (ERP) system. With this practical guide, SAP veterans Greg Foss and Paul Modderman demonstrate how to use several data analysis tools to solve interesting problems with your SAP data. Data engineers and scientists will explore ways to add SAP data to their analysis processes, while SAP business analysts will learn practical methods for answering questions about the business. By focusing on grounded explanations of both SAP processes and data science tools, this book gives data scientists and business analysts powerful methods for discovering deep data truths. You'll explore: Examples of how data analysis can help you solve several SAP challenges Natural language processing for unlocking the secrets in text Data science techniques for data clustering and segmentation Methods for detecting anomalies in your SAP data Data visualization techniques for making your data come to life

Practical Data Science for Information Professionals Book

Practical Data Science for Information Professionals

  • Author : David Stuart
  • Publisher : Facet Publishing
  • Release Date : 2020-07-24
  • Genre: Language Arts & Disciplines
  • Pages : 208
  • ISBN 10 : 9781783303441

Practical Data Science for Information Professionals Excerpt :

Practical Data Science for Information Professionals provides an accessible introduction to a potentially complex field, providing readers with an overview of data science and a framework for its application. It provides detailed examples and analysis on real data sets to explore the basics of the subject in three principle areas: clustering and social network analysis; predictions and forecasts; and text analysis and mining. As well as highlighting a wealth of user-friendly data science tools, the book also includes some example code in two of the most popular programming languages (R and Python) to demonstrate the ease with which the information professional can move beyond the graphical user interface and achieve significant analysis with just a few lines of code. After reading, readers will understand: · the growing importance of data science · the role of the information professional in data science · some of the most important tools and methods that information professionals can use. Bringing together the growing importance of data science and the increasing role of information professionals in the management and use of data, Practical Data Science for Information Professionals will provide a practical introduction to the topic specifically designed for the information community. It will appeal to librarians and information professionals all around the world, from large academic libraries to small research libraries. By focusing on the application of open source software, it aims to reduce barriers for readers to use the lessons learned within.

Big Data Analytics for Cloud  IoT and Cognitive Computing Book

Big Data Analytics for Cloud IoT and Cognitive Computing

  • Author : Kai Hwang
  • Publisher : John Wiley & Sons
  • Release Date : 2017-03-17
  • Genre: Computers
  • Pages : 432
  • ISBN 10 : 9781119247296

Big Data Analytics for Cloud IoT and Cognitive Computing Excerpt :

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among universit

Topics in Data Science with Practical Examples Book

Topics in Data Science with Practical Examples

  • Author : Abdolreza Abhari
  • Publisher : Createspace Independent Publishing Platform
  • Release Date : 2018-09-26
  • Genre: Uncategoriezed
  • Pages : 148
  • ISBN 10 : 1727124847

Topics in Data Science with Practical Examples Excerpt :

Data Science, sometimes known as methods of processing and analyzing massive data sets (Big Data), is a rapidly evolving field. This book teaches important topics of the emerging data science by providing simple and practical examples in R language. Initial chapters are about data collection and management at large scale, and then data analytics and applying statistical and machine learning models on the collected data are discussed in rest of the book. Ten important topics in data science are explained in ten chapters of this book with practical examples in Oracle SQL, R, Hadoop, and MapReduce. The fundamental of data management such as relational database systems, data mining and distributed computing with practical examples of SQL and implementing Hadoop and MapReduce are detailed in chapters 1 to 3. Regression and statistical analysis, neural networks, support vector machines and machine learning are explained in simple language together with R programming examples, in chapter 4 to 7. Natural language processing, recommendation systems and analyzing social networks graphs are explained in chapters 8 to 10 of this book. Dr. Abdolreza Abhari, a professor of computer science department at Ryerson University, has collected the material of this book after many years of teaching Data Science. With the background in computer science dating back to before the invention of the world wide web, professor Abhari has extensive experience in analyzing web and social network data and creating database systems for the companies and industrial sectors in Europe and North America. His teaching area in academia includes database systems, distributed systems, and data science for graduate and undergraduate students. Although this book is written for professionals and graduated students who have a university or college degree, it is also useful for whoever considers working in the data science industry.